If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+2n-2160=0
a = 1; b = 2; c = -2160;
Δ = b2-4ac
Δ = 22-4·1·(-2160)
Δ = 8644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8644}=\sqrt{4*2161}=\sqrt{4}*\sqrt{2161}=2\sqrt{2161}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{2161}}{2*1}=\frac{-2-2\sqrt{2161}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{2161}}{2*1}=\frac{-2+2\sqrt{2161}}{2} $
| 6d-2d+3D=14 | | –6h+7=–7h+1 | | 18=z-9 | | -7y+-8y+-8y+-14y-14y-20y=17 | | 3(2x-5)=-2(-4+7) | | 2(12p+19)+12p=45p+31 | | (5,3)m=-2 | | (x+1)-2(x-1)+6=2 | | 8u+22=46 | | -7(1-4x)=26x-39 | | -40(12h+2)+8h=8(-61h-14) | | 16h+4h-19h=17 | | 2k-8k+-6k+-5k=16 | | 19a-18a=20 | | 3x-2(2x+8)=5 | | 2x-4+x=86 | | -27f-170=16(-f-11)+11 | | 6f-2=7f+1 | | 2d+-10=0 | | -20r-13r+10+-5r=-20 | | -5(3x+8)=23-8x | | 1=3n-17 | | 6(41q+34)-18=30(9q+7)-18 | | 1/2(x-8)+1=2(1/8x-1) | | 15+2d=51 | | x=11/4-1/2 | | 10q-q-8q-q+2q=16 | | 8(4-2×)=4(3-5x)+4x | | 10=d/3-8 | | -3=6h-2=31 | | c/1+2=-1 | | 6(-13g-15)-12=-84g-95 |